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Abstract 

Given the widely accepted role of working memory (WM) in human cognition across tasks and 

domains, a central question has been, Is WM domain general? However, the term “domain-

general” has been used in different, and sometimes misleading, ways. By reviewing recent 

evidence and biologically plausible models of WM, we show that the level of domain-generality 

varies substantially between three facets of WM: in terms of principles of processing, WM is 

largely domain-general. In terms of neural correlates, it contains both domain-general and domain-

specific elements. Finally, in terms of application, it is mostly domain-specific. This variance 

encourages a focus shift towards uncovering domain-general principles and away from domain-

general approaches to WM training, favoring newer perspectives, such as training-as-skill-

learning, for the latter. 
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Highlights 

 

We break down the domain-generality of working memory into three components. 

In terms of principles of processing, working memory is domain-general. 

In terms of neural correlates, it is both domain-general and domain-specific. 

In terms of application, it is mostly domain-specific.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Is working memory domain-general or domain-specific? 

 

 

Working memory (WM) is the ability to maintain information over short periods of time, usually 

in the service of an ongoing task. Since different kinds of information may need to be temporarily 

maintained before they are acted upon, it is reasonable to ask whether WM is “domain-general”, 

meaning whether the process has a shared component across domains. The assumption of domain-

generality is behind many practices in current psychological studies and interventions. When 

researchers correlate scores on a WM task with scores on a completely different task to analyze 

individual differences, they are tacitly assuming some level of domain-generality. Similarly, when 

brain training programs train WM using video games, the assumption is that improving a domain-

general function will benefit all tasks that require WM. It is, thus, of both theoretical and clinical 

interest to verify the assumption of domain-generality of WM.   

The goal of this paper is to show that domain-generality/specificity includes three distinct 

components: (a) domain-generality in principles of processing, (b) domain-generality in neural 

substrates, and (c) domain-generality in application. Critically, domain-generality in (a) does not 

logically imply domain-generality in (b), or (b) in (c), hence calling for separate investigation of 

each component (see Box 1).  

Box 1. Logical inference about domain-generality 

Even if assumed only tacitly, research on domain-generality has recognized the three different 

components (a. principles of processing, b. neural correlates, and c. application). An issue, 

however, has been the assumptions regarding the logical relations between these components in 

the form of a → b and b → c. For example, b → c has been the logical assumption behind brain 

training studies: if the same neural region is involved in WM operations across domains, then 

training WM in one domain should lead to improved WM performance in another domain through 

inducing plastic changes in that region. Making such an assumption also implies that ¬c → ¬b: 

if the evidence for transfer of training between domains is weak, then no shared neural correlates 

exist.  



A main point of the current paper is that this kind of logical relation does not hold between a, b, 

and c. Theoretically, it is perfectly possible to have the same principles of processing implemented 

in distinct neural tissue (domain-generality in principles of processing, domain-specificity in 

neural substrates). Similarly, it is perfectly possible to have the same brain region involved in 

implementing a function in different domains, without implying transfer of learning between 

domains (domain-generality of neural substrates, domain-specificity in application). Parts 2 and 

3 of the current paper address these issues.  

1. Domain-generality in principles of processing  

One of the most fundamental and least disputed properties of human WM is its limited capacity 

[1–3]. As such, examining the principles that govern such capacity limitation across domains 

provides a good test of domain-generality of principles of processing. The theoretical debate 

regarding the source of capacity limitation in WM is still ongoing. Our goal in this paper is not to 

settle this debate. Rather, we review the evidence to arrive at the most biologically plausible 

account to date, and then test whether the same account applies to visual and verbal WM, given 

their largely different representations.  

Two major classes of theories have been proposed to explain capacity limitations of WM, discrete 

and continuous models [1,3,4]. Discrete models were based on a clever observation in early 

studies, namely that the number, and not the complexity, of stimuli determined WM capacity [3]. 

Correspondingly, it was proposed that WM has a fixed capacity, defined as k slots, within which 

items are stored perfectly and beyond which performance is at chance. The introduction of 

continuous reproduction paradigms [5,6], which allowed for measuring precision of a memory, 

revealed a problem in the predictions of the older discrete models: the old models predicted that 

below the capacity limit k, precision should be near-perfect and independent of the number of 

items, whereas empirical data showed a decline in precision even from 1 to 3 items. To account 

for this finding, Zhang and Luck (2008)[6] proposed a new version of discrete models, the slot-

plus-averaging model, according to which, when the number of items is below k, multiple copies 

of the same item are stored independently in multiple slots and their average determines 

performance. The idea of slots-plus-averaging was later adopted by more models [7], but has also 

received criticism [8–13]. 



The success of models that averaged over slots brings up the question of whether slots are 

necessary if information is averaged across them. This is the idea behind continuous resource 

models [4,12]. These models assume WM to be a continuous resource with no upper bound k. As 

the number of items increases, the precision with which they are encoded decreases. Thus, these 

models can account for the data using a single process of continuous resource division, although 

such division may be unequal among items [11,12,14–16]. Opposing this view are mixed-state 

models, which assume a dual process, a primary memory process and a second process of pure 

guessing [17–20], whereas in continuous models, guessing is simply the extreme end of the 

continuous process when an item receives almost no resources (see [21] for a unifying view).  

Importantly, while mixed-state models were originally built off of discrete models, the assumption 

of discreteness of slots has not been maintained as a critical one [9]. Importantly, continuous 

resource models are biologically more plausible. The notion of slots is hard to define at the neural 

level, and even if defined within certain frameworks, such as binding, it is difficult to justify why 

a certain value of k should be applicable [22]. In contrast, in continuous resource models, resource 

limitation is simply defined as neural gain, i.e., the amplitude of activation at the level of a neural 

population which has encoded a probability distribution over a given feature [21–25]. Higher gain 

means higher precision. Moreover, defining resource limitation as neural gain provides a natural 

link between WM and attention, which corroborates the close correspondence between the two at 

the level of brain [26], as well as behavior [27,28]. 

To summarize, despite some of the ongoing debates regarding the role of guessing as a qualitatively 

different process, there is much evidence that resource division between items that do get stored is 

continuous. Most of this evidence, however, comes from visual WM paradigms. But can the same 

principle be applied to verbal WM? Historically, visual and verbal WM have been assumed to be 

separate [29]. Empirically too, performance on visual and verbal domains are dissociable [30]. 

This dissociation is understandable given the very different nature of representations in these two 

domains. For one thing, visual stimuli are spread in space, whereas verbal stimuli are spread in 

time. Moreover, while the influence of category (color or phoneme labels) on perception has been 

reported in both domains [31–34], cf., [35,36], this influence is much stronger in the verbal 

domain, a finding known as categorical perception [33]. When presented with a series of artificially 

created stimuli between two phonemes, such as /b/ and /d/, participants do not experience them as 



a smooth continuum, but as either /d/ or /b/. Categorical perception is a desirable property of speech 

processing, as differentiating between minimal pairs such as /beer/ and /deer/ critically depends on 

the identification of the right phoneme and not its acoustic details. 

The continuous nature of visual representations makes a continuous resource model an intuitive 

model of visual WM, whereas the categorical nature of speech representations makes slot-based 

models a prime candidate for verbal WM. However, if the same principles operate across domains, 

continuous resource models should be able to account for the data in verbal WM. This proposition 

is not unreasonable, given that despite categorical perception, listeners are sensitive to subtle 

changes in the distribution of statistical information in acoustic dimensions even when the 

information does not flip the category [37,38], and such sensitivity is powerful enough to change 

production [39]. 

To test this, Hepner and Nozari (2019) [40] adapted the continuous reproduction paradigm to the 

auditory domain. Four continua (/bɑ/–/dɑ/, /kɑ/–/ɡɑ/, /ɹɑ/–/lɑ/, and /sɑ/–/ʃɑ/) were created, each 

manipulating one acoustic property of the pair to generate seven syllables from one end of the 

spectrum to the other. In the baseline phase, participants heard a single syllable from one of the 

four continua, and were asked to move a continuous slider to mark the position of the syllable on 

the continuum (Fig. 1a). This allowed for the calculation of a “deviation score” between the actual 

and the indicated position of the syllable, to measure precision. The results (Fig. 1a, b) showed 

that while the effect of category was not eliminated, participants were able to hear intermediate 

syllables. The authors then played 1, 2, or 4 syllables, sequentially, from different continua on each 

trial and probed one continuum at the end of the trial. After accounting for positional differences, 

the pattern was similar to that uncovered in visual WM paradigms, with a gradual increase in the 

deviation score as a function of increased set size even from 1 to 2 (see also [41] but see [40], for 

the criticism of their methodology).  

Two follow-up experiments investigated the interaction between attention and WM, by using 

probabilistic cues. In the pre-cue condition, a number was presented before the sequence was 

played, indicating the position in the sequence where the syllable had the highest chance of being 

probed. In the retro-cue condition, the same cue was presented but only after the syllables had 

been heard (Fig. 1d). The results showed that, for both pre- and retro-cues, deviation scores for the 

uncued items (i.e., those with a lower chance of being probed on a cued trial) were significantly 



higher than a baseline with no cueing. On the other hand, only pre-cues were successful at 

significantly decreasing deviation scores of the cued items (Fig.1e, f). Collectively, these 

experiments showed that the cued-item advantage was due to more price encoding, whereas the 

uncued-item disadvantage was likely due to the release of the uncued items during maintenance. 

Importantly, this pattern was very similar to that reported for visual WM [42]. 

To summarize, when WM in speech perception is probed using a continuous reproduction 

paradigm, the results look strikingly similar to visual WM. This pattern is compatible with a 

continuous resource model, but, in theory, also with a mixed-state model that combines a discrete 

slot model with a pure guessing process. To minimize the chance of guessing, Black and Nozari 

(2023) [43] applied the framework to speech production (see Box 2). 

Using a case-series approach, Black and Nozari (2023)[43] analyzed phonological errors from four 

individuals with aphasia. Extensive research has shown that the cognitive processes underlying 

aphasic error production are similar to those in neurotypical individuals, making such errors a 

powerful tool for studying cognition (See [44] for a review). Precision of an error was defined as 

the distance between the target and error phoneme in the articulatory-phonetic space, weighted 

more heavily for features more diagnostic of minimal pairs, using ALINE ([45]; Fig. 1g). WM 

load was simply word length, which varied between 3 and 9 letters (see Box 2). If phonological 

WM stores phonemes as discrete units, one would expect an increased probability of committing 

a phonological error with increasing word length, but there would be no reason to expect that such 

errors show a gradual increase in deviation from the target. Conversely, if phonemes in the 

phonological buffer have a graded representation, one would expect a continuous increase in 

deviation scores as a function of word length, as predicted by continuous resource models. This 

was indeed what Black and Nozari (2023) observed (Fig. 1h). The results held after ruling out the 

influence of position, differences in the number of correct segments, differences in the 

phonological composition of long and short words, and articulatory simplification. These findings 

match those reported for verbal WM in perception, as well as visual WM. Moreover, since 

phoneme selection within a word is unlikely to be driven by pure guessing (see Box 2), this pattern 

of results endorses the applicability of continuous resource models to verbal WM, despite the much 



greater utility of discrete categorical representations in speech vs. vision, pointing to domain-

generality in a core principle of processing.  

 

 

Figure 1. Paradigms and results for testing WM in speech perception and production. (a) Continuous 

ratings of the seven tokens for the four continua in the perceptual task. (b) Full distributions of responses 

averaged in (a). (c) Changes to mean deviation scores in the perceptual task as a function of number of 

items and position of presentation. (d) Examples of pre-cue and retro-cue trials in the cueing paradigm in 

the perceptual task. Baseline (not shown) had no cues. (e) Summary of mean deviations for cued, uncued 

and baseline items in pre- and retro-cue conditions in the perceptual task. (f) Same data as (e), broken down 

by position. (g) An example trial and ALINE coding in the production task. (h) Mean ALINE distance as a 

function of word length in the production task.  



Box 2. Where do phonological errors come from and why are they a good tool for studying 

working memory? 

Origin of phonological errors. The word production system is a hierarchical system comprising 

several layers of representations, from semantics to articulatory-phonetic features that guide 

motor production (Fig. 2; [46–48]. To say a word like “cat”, speakers must first activate the 

concept of cat (shown here schematically as distributed semantic features). Activation then spreads 

to lexical items, phonemes and articulatory phonetic features. The system has three key properties 

that create potential for errors: (a) Spreaidng activation activates all the representations that are 

connected to the currently activated nodes, regardless of their target/non-target status. (b) The 

system is cascaded, meaning that even items that are not selected in one layer still send some 

activation down to subsequent layers. (c) The system is interactive [49,50], meaning that activation 

not only flows from upper to lower layers, but also backwards. This feature is important for 

producing phonological errors (e.g., “mat” instead of “cat”). When the lexical item “cat” is 

activated, it activates phonemes /k/, /æ/ and /t/. Through feedback between phonemes and lexical 

items, /æ/ and /t/ activate “mat”, which in turn activates its onset /m/, the misselection of which 

leads to the phonological error “mat”.  As such, activation reverberates between phonemes and 

lexical items that support them, making the retrieval of other phonemes in the same words easier. 

Relationship to WM. Several findings suggest that sequencing phonemes within a word taps into 

similar memory processes as memorizing items within a list, albeit less explicitly. The evidence 

includes the length effect, i.e., an increase in the probability of phonological errors as the word 

length increases, above and beyond chance [51], as well as strikingly similar positional effects in 

phonological errors in picture naming and reading and memory errors in serial recall tasks [52]. 

Furthermore, the inability to maintain information about phonology in WM (e.g., whether a probe 

word rhymed with another word in a list) is predictive of phonological errors [53].  However, while 

items in a typical serial recall task are usually independent of one another, hence giving rise to 

responses that are simply guesses, phonemes within a word are not. Even if a phoneme is hard to 

retrieve, it still receives support from the lexical item, as well as other correctly retrieved 

phonemes. This dynamic makes selection by pure guessing a much less likely scenario in word 

production compared to a typical memory experiment. 

 



 

 

 

 

 

 

 

 

 

 

 

 

2. Domain-generality in neural substrates 

A general framework has emerged in which WM is argued to be implemented in a network 

comprising sensory and fronto-parietal regions, with contribution from cerebellum, as well as 

subcortical regions including hippocampus, thalamus and basal ganglia [54–63]. Comprehensive 

reviews of the role of these regions exists elsewhere (e.g., [57,64], as do reviews of debates on the 

relative importance of sensory vs. non-sensory regions in WM [65,66]. Rather, our goal in the 

current paper is to examine the existing evidence as it relates to domain-generality or specificity 

of the neural correlates of WM. The target of such investigation will, obviously, not be the sensory 

cortex, as domain-specificity is undisputed in those areas. Rather, the focus will be on regions that 

are not clearly specialized to process a certain type of sensory information, such as the 

frontoparietal regions.  

Although parietal regions have been implicated in both visual and verbal WM, different parts of 

the parietal lobe have been identified in these two domains. Specifically, the bulk of evidence in 

visual WM points to posterior parietal and intraparietal sulcus (IPS), whereas verbal WM studies 

often implicate the supramarginal gyrus (SMG) [67–76]. Even within the domain of language 

processing, researchers have identified separable neural correlates for semantic and phonological 

Figure 2. A schematic of the interactive word production system when the target 

is CAT. For simplification, only some articulatory-phonetic features are shown. 

Similarly, feedback (orange) is only shown between MAT and its phonemes, but 

exists everywhere in the system. 



WM [77]. For example, Yue and Martin (2021) [75] used representational similarity analysis (Fig. 

3c) on data from participants judging either the phonological or semantic similarity of a memory 

item to a probe item (Fig. 3a, b).  For the phonological task, they were able to decode phonological 

representations in superior temporal gyrus (STG, the speech perception region [48]) during 

encoding but not during maintenance across a delay period (Fig. 3d), whereas in the SMG, the 

opposite was the case (Fig. 3e; see also [74,76] for similar evidence using multi-voxel pattern 

analysis (MVPA) and transcranial magnetic stimulation (TMS)). On the other hand, semantic 

representations could not be decoded in either STG or SMG during either encoding or 

maintenance, showing the specificity of these regions for phonological WM. In contrast, both types 

of information could be decoded from angular gyrus (AG; Fig. 3f), although in a task-specific 

manner, e.g., phonological information could only be decoded in the phonological task but not in 

the semantic task.  

Also informative about the neural correlates of WM are studies using voxel-based lesion-

symptom mapping (VLSM), which examine the relationship between brain lesions and behavioral 

deficits in individuals with brain damage. Although several studies have examined the neural 

correlates of WM using this method (e.g., [78–80], very few studies have compared the neural 

regions involved in semantic and phonological processing within the same participants in tasks 

with comparable demands. One such study was conducted by Ding et al. (2020) [81], who used a 

multivariate approach to lesion symptom mapping to assess whether different brain regions 

support phonological vs. semantic WM.  The 94 participants were tested at the acute stage (most 

within one week) of left hemisphere stroke, ruling out reorganization of function. Participants’ 

single-word semantic and phonological processing abilities were controlled for by partialing out 

performance on a picture-word matching task, which included semantic and phonological 

distractors. To tap phonological WM, a digit matching task was used in which participants judged 

whether two lists were the same or different (e.g., 3 5 2 1 9 , 3 5 1 2 9) and to tap semantic WM, a 

category probe task was used in which participants heard a word list and judged whether a probe 

word was in the same semantic category as any list word (e.g., list: table shirt apple rose; probe: 

chair). For both tasks, WM load was manipulated by presenting lists of increasing length. Control 

for the other WM measures was employed to identify regions specific to either semantic or 

phonological WM, as many regions might be expected to be drawn on in common for the two tasks 

(e.g., general attentional regions). Figure 4 (a) shows the number of individuals with damage to 



individual voxels. The results for phonological WM are shown in Figure 4 (b). In keeping with the 

neuroimaging results, the largest number of relevant voxels were in SMG (see also [82]).  Several 

frontal and subcortical regions were also identified, all of which could plausibly be involved in 

articulatory rehearsal.  Figure 4(c) shows the regions associated with semantic WM performance.  

Again, in line with the neuroimaging findings, the largest regions was AG, as well as a region 

spanning the opercular portion of the inferior frontal gyrus and the insula [83,84]. The next largest 

region was in the posterior superior temporal sulcus – a region often thought to link phonological 

with semantic representations [85]. These results show a clear double dissociation in neural 

correlates of semantic and phonological WM.   

To summarize, studies of WM across visual and verbal domains, and even subdomains of 

language processing have implicated largely separable neural correlates for different types of 

information, pointing to domain-specificity in neural correlates. That said, there is also evidence 

that certain regions may be involved in aspects of processing that have a more domain-general 

flavor. For example, Guidali et al. (2019) [86] showed that transcranial magnetic stimulation 

(TMS) of SMG affected the maintenance of a sequence regardless of the nature of items (verbal, 

spatial or motor), bringing up the possibility that the sequencing demand of certain WM tasks may 

also critically involve this region. Similarly, as discussed earlier, both phonological and semantic 

representations could be decoded from AG, although each in a task-specific manner [75]. This 

finding fits well with the role of AG in episodic (as opposed to non-episodic) memory [87]; see 

also [88], which would predict its involvement in processing various kinds of information but each 

related to a specific context. Finally, there is ample evidence for the involvement of prefrontal 

regions, thalamus and basal ganglia in balancing maintenance and updating functions of WM (Box 

3). It is reasonable to assume that, in so far as balancing these demands are required in WM tasks, 

the neural correlates involved in this gating processes could be shared between tasks. However, as 

shown in Box 3, these loops are triggered by sensory-motor mapping and task goals, which are, 

by definition, domain and task-specific.  

 



 

 

Figure 3. Design and results from Yue & Martin (2021). (a) An example trial with a highly similar probe in 

the phonological WM task. A somewhat similar probe would be “post” and a dissimilar probe would be 

“tease”. (b) An example trial with a highly related probe in the semantic WM task. A somewhat related 

probe would be “asphalt” and an unrelated probe would be “laugh”. (c) ROI-based RSA data analysis 

strategy. For a given ROI, the neural dissimilarity was calculated for each pair of words based on the 

neural activation pattern across all voxels in that ROI, to estimate the neural representational dissimilarity 

matrix (RDM) (green). Then, the neural RDM was compared to either the phonological RDM (blue) or the 

semantic RDM (red). This procedure was conducted for activation pattern obtained during the encoding 

period and the delay period of the phonological task and the semantic task, respectively. (d, e, f) The graphs 

show the average neural-model similarity index (i.e., Spearman correlation coefficient) at each time point 

spanning the encoding period to the delay period, with the one calculated based on the average activation 

pattern across the delay period on the rightmost side in (d) the left superior temporal gyrus (STG), (e) the 

left supramarginal gyrus (SMG), and (f) the left angular gyrus (AG). The colors indicate the task with the 

blue for the phonological WM task and red for the semantic WM task. The dark colors represent 

correlations with the target models whereas the light colors represent correlations with the contrasting 

control models. Error bars represent the standard error of the mean. Dashed lines indicate the typical 

boundaries between the encoding period and the delay period. pho: phonological; sem: semantic. Asterisks 

indicate the significance of one-sample t-test:  *p < .05, **p < .01, ***p <.001. 



 

 

Box 3. What might domain-general neural regions do in WM tasks?  

Aside from regions in the parietal cortex discussed in the text such as AG, several other regions, 

including prefrontal cortex (PFC), thalamus, and basal ganglia have been implicated in domain-

general WM processes. One of the most detailed accounts of the role of these regions is O’Reilly 

and Frank’s (2006) [89] gating model, a schematic of which is shown in Figure 5. The model 

explains the trade-off between maintaining and updating memories in PFC over short periods of 

time. Sensory input is mapped onto motor outputs via posterior cortical regions. PFC’s role is to 

modulate this mapping based on prior information and task goals. PFC’s flexibility in updating is 

adjusted through gating via baso-cortical loops.  Thalamus always excites the PFC, however this 

excitation is inhibited by substantia nigra (SN). Two pathways via dorsal striatum modulate this 

Figure 4. Lesion overlap distribution and lesion-symptom mapping results of Ding et al. (2020). (A) 

Lesion overlap in 94 acute left hemisphere stroke subjects where only regions damaged in at least 5 

subjects (>5%) were included in the lesion-symptom mapping analyses. Beta values of the regions 

significantly associated with decreased performance in the phonological WM (B) and semantic WM 

(C) measures after accounting for lesion volume, input processing (input processing composite score 

of semantically and phonologically related word–picture matching d’ scores), and the respective 

opposing WM task (p values < 0.05). pWM = phonological WM, sWM = semantic WM. 



interaction. The direct pathway is activated when the Go neurons with excitatory D1 receptors in 

dorsal striatum are activated. They directly inhibit SN, which leads to the disinhibition of thalamus 

and updating in PFC. The indirect pathway is activated when the NoGo neurons with inhibitory 

D2 receptors in dorsal striatum are activated. This pathway counteracts the direct pathway by 

inhibiting globus pallidus. Since globus pallidus itself has an inhibitory effect on SN, its inhibition 

leads to the activation of SN and further inhibition of thalamus, which prevents updating in PFC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Domain-generality in application 

One of the key outcomes of the assumption of domain-generality has been the emergence of WM 

training programs. The general idea behind these programs is that extensive (and usually adaptive) 

training of WM using a small number of (computer-based) tasks will improve WM capacity across 

a wide array of tasks in real life (i.e., far transfer; [90–92]. The efficacy of brain-training methods 

Figure 5. Schematic of O’Reilly & Frank's (2006) 

model of gating in WM. GPe = globus pallidus, I = 

input, O = output, PFC = prefrontal cortex, SNr = 

substantia nigra. 



in general, and WM training in specific, has been one of the most hotly debated topics in the past 

two decades. The reason is that WM is considered to underlie a very wide range of cognitive tasks, 

act as a building block of general intelligence [93,94], and be a critical locus of impairment in 

many neuropsychiatric conditions such as schizophrenia and attention-deficit hyperactivity 

disorder [95,96]. Therefore, it is natural that an easy tool for training WM would be highly 

appealing to both neurotypical and impaired populations. In fact, sales in the digital-brain-health 

market already well exceed $1 billion, with more than one case of charges brought up by Federal 

Trade Commission against brain-training companies for deceptive advertising practices [97].  

There are numerous empirical studies, meta-analyses, and review papers arguing for or against the 

efficacy of WM training [98–102]. As with neural correlates of WM, our goal is not to review this 

literature here, but rather to examine whether far transfer is predicted by current, biologically 

plausible, theories of WM. Proponents of far transfer often cite neuroplasticity as the foundation 

of their theoretical perspective. It is well-established that training WM induces plastic changes in 

certain brain regions (e.g., dorsolateral prefrontal cortex, DLFC) by changing the local field 

potentials and recruiting a greater proportion of neurons with increased firing rates [103,104], and 

that such plasticity improves performance on trained tasks [105,106]. It is also well-known, as 

reviewed in the earlier sections, that there is some overlap in cortical and subcortical regions 

involved in WM processes across various tasks and domains [107]. Combining these two 

uncontroversial findings, it has been reasoned that, if there is some domain-generality in neural 

correlates of WM and if such neural regions show plasticity, then inducing plastic changes through 

one task should lead to improved performance in other tasks [105,108] (logical inference  b → c; 

Box 1). Indeed, single-cell recordings from the DLPFC of rhesus monkeys shows that changes 

induced during training are sufficient to benefit near-transfer, i.e., changes to the task parameters 

such as delay period or stimulus location in visual WM paradigms [104], and similar effects have 

been observed in humans [109]. The critical question, however, is whether far-transfer can be 

expected, when there is little or no overlap between stimuli and/or task goals, except for the 

necessity of holding on to information over short periods of time. The answer, according to recent 

neurobiologically plausible computational models of WM is no. Box 4 discusses an example 

model, proposed by Bouchacourt and Buschman (2019) [110] (Fig. 6). Critically, the model 

implements the uncontested assumptions of neuroplasticity and the undifferentiated neural space 

that overlaps across tasks. Nevertheless, while training does improve performance on the same 



task, as well as new stimuli within task [111], far transfer is not predicted by these models (see 

Box 4 for details). 

Box 4. Do biologically plausible models of WM predict far transfer? 

Models of WM must explain many properties, such as its flexible nature for temporarily storing 

various kinds of information, its capacity limitation, and sensitivity to interference [112], as well 

as neural findings, such as the increase in neural activity with WM load [113], involvement of a 

distributed network comprising sensory cortex and frontoparietal and hippocampal regions [57], 

and the dual static-dynamic nature of neural representations in WM [114,115]. One recent model 

that successfully captures all of this is Bouchacourt and Buschman’s (2019) [110], which models 

WM as random and recurrent connectivity between a structured network (representing sensory 

regions) and an unstructured random network (representing regions such as PFC and 

hippocampus; see also newer versions that also implement fast Hebbian synaptic plasticity [116]. 

The idea of WM as a workspace is instantiated by the random connections to the random network, 

which generate a high-dimensional space within which various types of information can be 

temporarily stored, such as those reported in PFC or the hippocampus [117]. As such, the model 

very much embraces the idea of undifferentiated neural regions involved in WM operations across 

various tasks and domains, and could be considered a great candidate for demonstrating domain-

generality in application. Yet, even within such a model, while learning does optimize performance 

on trained items, benefits do not generalize to untrained items. The reason is that training 

increases the correlation between the input in sensory regions and the random network, and is 

therefore specific to those connections. Most recent advances, such as spatial computing models, 

allow generalization to new items within the same task, but even in these models, different tasks 

generate unique patterns of neural activity [111].  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aside from the neuroplasticity view, two other theoretical perspectives have been expressed 

regarding transfer (Box 5). The representational overlap view e.g., [94] emphasizes that transfer is 

limited to tasks that share overlap in representations and processes. However, defining these 

processes upfront has been a challenge. In a large-scale and well-controlled study, Gathercole et 

al. (2019) [118] demonstrated that overlap in stimulus, response, or task, alone was not sufficient 

to reliably predict transfer, casting doubt on the utility of the representational account. They, in 

turn, proposed the skill learning account. In contrast with the representational overlap account, this 

account emphasizes learning new routines during training. If such routines cannot be learned or 

Figure 6. Flexible WM model of Bouchacourt and Buschman (2019). (A) Model layout. The sensory 

network is composed of 8 ring-like sub-networks. The inset shows center-surround connectivity 

within a sensory sub-network. The connections to the random network are randomly assigned and 

balanced. (B) Raster plot of an example trial with 8 sensory sub-networks (512 neurons each) 

randomly connected to the same random network (1,024 neurons). Six sensory sub-networks (1–6) 

receive a Gaussian input for 0.1 s during the ‘‘stimulus presentation’’ period (shaded blue region). 

Representations are maintained (without external drive) for four of the inputs. Reproduced with 

permission from Bouchacourt and Buschman (2019). 



readily transferred to a new task, there will be no transfer (see Box 5). For example, N-back tasks, 

often used for WM training, entail routines that are not applicable to many other WM tasks, which 

explains the absence of transfer between them [119]. Similarly, Gathercole et al. (2019) reported 

substantial transfer between complex span tasks within the same stimulus domain, but not across 

domains. This result indicates that cognitive routines may depend strongly on task and domain, 

making the skill learning view the most restricted of the three perspectives in predicting 

generalization in WM training, but also the most compatible with both theoretical models of WM 

and empirical evidence. Critically, the success of the account hinges on the fact that it does not 

posit an automatic mechanism for far transfer solely based on shared representations or neural 

substrates. Rather, it emphasizes the development of new cognitive pipelines through learning, 

some of which are outside of primary WM operations. 

 

Box 5. Working memory training benefit: plasticity, overlap or skill learning?  

Theories of transfer for WM training fall under three general groups:  

1- Neuroplasticity. This account assumes that automatic and undifferentiated plasticity of domain-

general neural correlates of WM leads to transfer to a wide range of tasks that tap into the same 

neural regions, predicting far-transfer [e.g., 105,107]. 

2- Representational overlap. This account claims that the extent of transfer of WM training 

between two tasks depends on the degree of overlap between their features/processes. Although 

less general than the neuroplasticity account, the representational overlap account still predicts 

automatic transfer, and attributes the absence of transfer to the lack of overlap in the appropriate 

representations [e.g., 94,120]. It is, however, unclear which features and processes constitute the 

critical representational mediating transfer.  

3- Skill learning. This account claims that transfer is only expected when a new cognitive routine 

is learned during training, which can later be applied to a new task [118,121]. Importantly, and in 

opposition to the other two views, transfer is not viewed as automatic and may very well comprise 

strategies that lie outside of core WM processes. No significant transfer is expected if the tasks are 

either too well-learned to allow room for new strategies to develop during training, or if they are 

too different to benefit from the application of the same newly developed cognitive routine.  



In summary, while the assumption of domain-generality in neural implementation is very much 

part of the cutting-edge computational models of WM, this assumption does not lead to the 

prediction of domain-generality in application. Quite the opposite, these models predict task-

specific patterns of neural activity, and at best, generalization to new items within the same task 

(see also Box 6 for complementary evidence from the analysis of individual differences). At the 

same time, a new and more restrictive perspective on transfer, namely transfer by learning new 

cognitive routines, shows much promise, although there are still open questions regarding what 

constitutes a new cognitive routine and what factors promote the learning of such routines in 

individuals.  

 

Box 6. Does neuropsychological evidence support domain-generality in application? 

Aside from training studies, another informative source of evidence for assessing domain-

generality of WM in application is the analysis of individual differences. If WM is one general 

ability, that ability should be predictive of performance in all tasks that tap WM, regardless of 

domain. Conversely, if WM is domain-specific, WM abilities in specific domains should be 

predictive of task performance only within that domain. Following Shah and Miyake's (1996) 

seminal study pointing to the latter, other neurotypical and neuropsychological evidence has also 

supported a dissociation between the contribution of visual and verbal WM to visual and verbal 

tasks [e.g., 123–126]; see [77] for a review. Even more striking are reports of double dissociations 

within one domain, language processing, in individuals with brain damage. For example, double 

dissociations have been reported between semantic and phonological WM abilities in individuals 

with aphasia [127,128]; see [77,129] for reviews. Importantly, these two types of impairments have 

different consequences for language processing: phonological WM deficits lead to impaired 

verbatim repetition, whereas semantic WM deficits lead to greater disruption of comprehension 

and elaboration of content during language production [130,131]. In summary, both neurotypical 

and neuropsychological data on individual differences in WM point to domain-specificity of WM 

in application, complementing the data from training studies.  

 

 



4. Concluding remarks 

The goal of this paper was to show that while the question of domain-generality of WM is an 

important one, it must be posed separately for principles of processing, neural substrates, and 

application, to be truly informative, as the answer differs for each. We showed that, in terms of 

principles of processing, WM is indeed domain-general. In terms of neural correlates, it contains 

both domain-general and domain-specific elements. Finally, in terms of application, it is mostly 

domain-specific. Thus, if progress is to be made, researchers need to be clear about which aspect 

of domain-generality is being addressed, and mind the limits of logical inference when extending 

claims of domain-generality across these three components. The current review encourages a 

greater focus on cross-domain investigation of theoretical principles involved in WM operations, 

such as sequencing, and their potentially domain-general neural correlates, while at the same time 

implying a need for understanding why some non-sensory regions behave in a domain-specific 

manner in WM operations. This overview also encourages a major shift in perspectives regarding 

WM training, from an expectation of transfer as a natural and automatic consequence of domain-

generality in neural correlates to a view of transfer as skill learning.  

 

4. Outstanding questions 

- Computational models have been instrumental in shedding light on the role of domain-general 

circuits underlying WM, such as the thalamo- and baso-cortical loops for gating operations (Box 

3). Do similar loops exist for operations such as sequencing items in WM, and if so, what 

computations are carried out by each component of such loops?  

- Current computational models include both sensory and domain-general regions in WM circuits, 

however neural data also point to non-sensory, domain-specific regions such as SMG and AG. 

What properties make these regions distinctly suitable for specific domains? Are different 

computations carried out by these regions across different domains?  

- Cutting-edge models using spatial computing have been critical to explaining transfer and 

generalization in visual WM (Box 4). Do similar principles apply to stimuli from other domains, 

such as the auditory domain? 



- The new perspective of learning new cognitive routines as the basis of transfer (Box 5) offers 

promise for real world application, but what constitutes a cognitive routine and what factors 

determine its overlap with new tasks? What characteristics in learners determine the ability to learn 

new cognitive routines and their transfer to new tasks? 

- The dissociations reported in the analysis of individual differences suggest that using a single 

WM task as an index of “WM ability” is theoretically unmotivated (Box 6). Given the new 

perspectives on transfer, what types of measures may be more appropriate for analyzing individual 

differences in WM? 
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